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1. INTRODUCTION

Throughout this paper, all rings are commutative with
identity and if R is a ring, then Z(R) denotes the set of
zerodivisors of R. Our main purpose is to generalize the study
of pseudo-valuation domains (as introduced in [8]) to the
context of arbitrary rings (with Z(R) possibly nonzero). Recall
from [8] that an integral domain R, with quotient field K, is
called a pseudo-valuation domain (PVD) in case each prime
ideal P of R is strongly prime, in the sense that xy ¢ P, x ¢
K, v € K implies that either x ¢ P or vy € P; equivalently, in
case R has a (uniquely determined) valuation overring V
such that Spec{R) = Spec(V) as sets; equivalently (by [3,
Proposition 2.6}, in case R is a pullback of the form V xgp k,

where V is a valuation domain with residue field F and k is
a subfield of F; equivalently, in case (R, M) is a quasilocal
domain such that (M : M) = {x e KIxM ¢ M} is a valuation
domain with maxirfial ideal M. Additional characterizations of
PVDs are known, for instance in terms of comparability of
fractional ideals (cf. [1], [2], [4], [B]).
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The first part of this paper concerns the extent to which
the above equivalences carry over to the more general
réag-j}aggretic context, as we study pseudo-valuation rings
(PVRs, defined in Section 2). By analogy with known results on
PVDs, we also consider the stability of the class of PYRs with
respect to homomorphic images and localization. The second
part of this paper concerns stability of the class of PVRs under
passage to overrings; and the related issue of whether R' = V,
where (R, M) is a pseudo-valuation ring with integral closure
-R"and (M : M) =.V. This work is motivated by the result (cf.
{9, Proposition 2.71, [6, Proposition 4.2]) that if R is a PVD with
carionically associated valuation domain V, then each overring
of R isa PVDif andonly if R' = V.

Prior study of the "strongly prime ideal” concept and its
generalizations has focused on the case of integral domains, as
in {8], [7], (2], [4], and [5]. For this reason, we emphasize here
the new role of Z(R), while following methods familiar from
the dormain-theoretic context as much as possible. Most of our
departures from those methods arise because not all the
relevant results on PVDs generalize without qualification to
PVRs. Any unexplained material is standard, as in [10].

2. RESULTS

A prime idea! P of aring R is said to be strongly prime if
aP and bR are comparable for all a, b ¢ R. If R is an
integral domain, this is equivalent to the definition in the
introduction (c¢f. [1, Propesition 3.1], [2, Proposition 4.2], [5,
Proposition 3]). We shall say that a ring R is a
pseudo-valuation ring (PVR) if each prime ideal of R is
strongly prime. Examples of PVRs include PVDs, in particular,
valuation domains, and by Corollary 3, any homomorphic
image of a valuation domain. Lemma 1 and Theorem 2 are the
analogues for rings with zerodivisors of [8, Corollary 1.3 and
Theorem 1.4

Lemma 1. (a) Let | be an ideal of a ring R and P a
strongly prime ideal of R. Then [ and P are cormparable.
(b} Any PVR is quasilocal.
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Proof. {a) Suppose that | is not contained in P. Then for
hel-P and a = 1, bR is not contained in P = aP, and so
PC bR CIL

(b} This follows easily from (a). O

Theorem 2. A quasilocal ring R with maximal ideal M is a
PVR if and only if M is strongly prime.

Proof. By definition, M is strongly prime if R is a PVR.
Conversely, suppose that M is strongly prime. We must show
that each nonmaximal prime ideal P of R is strongly prime.
Let a, b € R. We show that aP and bR are comparable.
Since M s strongly prime, aM and bR are comparable. If
aM ¢ bR, then aP ¢ aM ¢ bR. Thus we may assume that bR
is properly contained in aM, and hence b = am for some
me M. If meP, then b= am € aP, and hence bR C aP.
Thus we may assurmne m¢ P. We show that P € mM. Let
x € P. Then xR and mM are comparable. If mM C xR C P,
then either m € P or M € P, a contradiction. Thus xR C

mM for all x ¢ P, and hence P ¢ mM. Thus aP ¢ amM =

bM C bR. O
Corollary 3. Any homomorphic image of a PVR is a PVR. O

Recall that a ring R is a chained ring if its ideals are
linearly ordered by inclusion (equivalently, its principal ideals
are linearly ordered by inclusion). Our next corollary is the
zerodivisor analogue of the result that any valuation domain is
a PVD [8, Proposition 1.1].

Corollary 4. Any chained ring R is a PVR,

Proof. Let R be a chained ring with maximal ideal M and
a, b € R. Since R is a chained ring, the ideals aM and bR
are comparable. Thus M is strongly prime, and so R is a
PVR by Theorermn 2. O

We next give several equivalent "comparability” conditions
for a (not necessarily quasilocal) ring R to be a PVR (cf. [5,
Proposition 3] and [8, Theorem 1.4]).
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Theorem 5. Let N be the set of all nonunit elements of a
ring R. Then the following conditions are equivalent:

(1) R is a PVR;

(2) For all a, b € R, either alb or blan for all n e N;

(3) For all ideals | and J of R, either 1 ¢ J or JL C I
for every proper ideal L of R:

(4) For all a, b € R, either alb or aN C bN.
Proof. (1) = (2): This follows easily since if R is a PVR, then
R is quasilocal with strongly prime maximal ideal M { = N ).
(2) = (3). Supposethat 1 ¢ J. If iel~-J and j€ J, then by
(2),iljr forall r e LC N. Thus JL C 1. (3) = (4): Let I = bR
and J = aR, and apply (3). (4) = (1): We first observe that R
is quasilocal. If not, R has distinct maximal ideals P and Q.
Choose a ¢ P-Q and be Q- P. If alb, then b e P, a
contradiction. If aN € bN. then a2 ¢ bN C Q, and hence a «
Q. also a contradiction. Hence by (4), R is quasilocal with
maximal ideal M, so N = M. Let a, b ¢ R. Suppose b = ar
with r ¢ R. Thenn BR € aM if r ¢ M; otherwise, a = iy
and aM C bR. If a /b, then by (4), aM € bM C bR. Hence M
Is strongly prime, and so R is a PVR by Theorem 2. O

The converse of Corollary 4 is false. The easiest example is
any nonvaluation PVD. A nondomain example is given in
Example 10(a). Our next result shows how to construct a PVR
as a pullback of a chained ring.

Theorem 6. Let YV be a chained ring with maximal ideal M,
F o= V/M its residue field, ¢ : V ——— F the canonical
epimorphism, k a subfield of F, and R = ¢ 1(k). Then the
pullback R = V *rk is a PVR.

Proof. First, note by standard pullback lore that R is
quasilocal with maximal ideal M. Let a, b € R. We show that
aM and bR are comparable. Since V is a chained ring,
either alb or bla in V;say b=ra forsome re V. If
r € M, then b ¢ aM, and hence bR ¢ aM. So we may assume
that r is a unit of V. Thus a = r b with r !¢ V. For
m € M, am = b(r"im) ¢ bM ¢ bR since M is an ideal of V.
Thus aM < bR. The bla case is similar. Hence R s a PVR
by Theorem 2. O

>

R E A
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In Corollary 9, we will give a partial converse to Theorem
6. Recall from [3, Theorem 3.10] that if R is a proper subring
of a ring T, then Spec(R) = Spec(T) if and only if Max(R) is
comparable to Max(T), and, in this case, R (and hence T) is
quasilocal. In the spirit of [3], we have the next result.

Theorem 7. Let T be a quasilocal ring with rmaximal ideal
M and R a subring of T with maximal ideal M ( thus
Spec(R) = Spec(T) ). Then R isa PVYRifandonly if T is a
PVR.
Proof. First suppose that R isa PVR. Let a, b e T. We may
assume that a, b € M. Then aM and bR are comparable
since R is a PVR. Then aM C bR implies aM € bR C bT; so
we may assume that bR ¢ aM. But then bT € aMT = aM,
and hence T is a PVR by Theorem 2. ‘ o
Conversely, suppose that T isa PVR. Let a, b ¢ K Again,
we may assume that a, b ¢ M. Then aM and bT are
comparable since T is a PVR. If bT C aM, then bR C aM; so
we may assume that aM < bT. If aM is not contained in
bR, then am = bt for some m ¢ M and t ¢ T - R. Hence t
is a unit of T; s0 b = almt™1) ¢ aM, and thus bR C aM.
Hence R is a PVR by Theorem 2. O

Henceforth, let S denote the set of non-zerodivisors of
ring R and Rg the total quotient ring of R. If R s
quasilocal ring with maximal ideal M, we define ( M : M)
{x ¢ RglxM < M}, the largest overring of R (in Rg) in
which M is an ideal. Let R be a quasilocal ring (for instance,
a PVR) with maximal ideal M. If M = Z(R), then Rg = R and,
in particular, (M : M) = R. If M contains a non-zerodivisor,
then this observation may be strengthened as in the following
result.

a
a

H

Theorermm 8. Let R be a PVR whose maximal ideal M
contains a non-zerodivisor. Then V = (M : M) is a chained
ring with maximal ideal M.

Proof. Let a/s, b/t € V, where &, b € R and s, t ¢ S. Then
at, bs € R. We show that atV and bsV are comparable, and
hence {(a/s)V and (b/t}V are comparable. Thus we need only
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show that aV and bV are comparable for a, b € R. In fact,
we may assume that a, b € M.

First, aM and bR are comparable since R is a PVR. If
bR <€ aM, then b = an for some n € M, and hence bV <C aV.
Thus we may assume that aM is properly contained in DbR.
Let s € M be a non-zerodivisor. Then as = br for some r ¢
R. Now rM and sR are comparable since R is a PVR. If sR
C rM, then s = rm for some m € M. Then r and m are
not zerodivisors since s is not a zerodivisor. Thus, since as =
br, we have arm = br, and am = b since r is not a
zero-divisor. Thus bV C aV. We may thus assume that rM
is properly contained in sRk. Hence rM C sM, so (r/sIM € M,
and thus r/s € (M : M) = V. Since as = br, a = blr/s] with
r/s € V. Hence aV C bV, and V is a chained ring.

Finally, we show that M is the maximal ideal of V, that
is, each x € V-M isaunitof V. Let x = r/s ¢ V - M, where
€ R and se€ S If se R-M, then s is a unit of R. Thus
x=rsteRr- M, and hence x is a unitin R, and thus a unit
in V. Hence we may assume that s ¢ M. Thus sM and rR
are comparable since R is a PVR. If rR C sM, then r = sm
for some m € M, and hence x = r/s = sm/s =m € M, a
contradiction. Thus sM is properly contained in rR. Hence
s2 = r1 for some t € R. Thus both r and t are non-zero-

o ) . o -1
divisors since s is a non-zerodivisor. Hence x 1! = s/r ¢ Rg.

Since sM is properly contained in rR, sM C rM, and hence
(s/rIM € M. Thus x 1 =3s/re (M:M)=V. Hence M is the
unique maximal ideal of V. 0O

Corollary 9. Let R be a PVR whose maximal ideal M
contains a non-zerodivisor. Then R is the pullback Vxpk,

where V = (M : M)} is a chained ring and k = R/M ¢ V/M = F.
w]

Together with Theorem 6, Corollary 9 recovers the pullback
characterization of PVDs mentioned in the Introduction,
Howewver, our next example shows that the hvypothesis in
Theorem 8 and Corcllary 9 that M contains a non-zerodivisor
is necessary.
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Example 10. (a) Let k be a field and X and Y
indeterminates. Then R = k[X,YV/(X2, XY, Y2) = klx,y] is
quasilocal with maximal ideal M = (x, y). Note that zM = 0
for any z € M, and hence R is a PVR with Z(R) = M.
However, R = (M : MJ), and R is not a chained ring since the
ideals xR and yR are not comparable.

(b} A one-dimensional PVR, R, with maximal ideal M
which consists only of zerodivisors. Let V = Zigy + XGUXY, a

two-dimensional valuation domain with prime jdeals 0 ¢ P =
XQUX € M = 2Z(9) + XQUX]. Let R = V/X2V. Then R is a
PVR by Corollary 3, and dimR = 1. Note that nil{R) = P/X2V
{ nil{R) is the set of nilpotent elements of R ), and Z(R) =

M/X2V since (x2/2)M < X2V, but X2/2 ¢ X2V since 1/2¢ V.
]}

We have the following converse to Theorem 8.

Theorem 11. Let R be a quasilocal ring with maximal ideal
M, If V= (M:M) is a chained ring with maximal ideal M,
then R is a PVR.

Proof. By Corollary 4, V is a PYR. Hence R is a PVR by
Theorem 7. O

We next show that any proper localization of a PVR is a
chained ring (cf. [8, Proposition 2.6]). ( Note that any proper
localization of a PVR, R, has the form Rp for a nonmaximal

prime ideal P of R since Spec(R) is linearly ordered. In
particular, Rg, the total quotient ring of a PVR, R, is a chained

ring if Rg # R.)

Theorem 12. Let R be a PVR with maximal ideal M and P
a nonmaximal prime ideal of R. Then Rp is a chained ring.
Moreover, Rp = (M : M)p.

Proof. Let X,y € Rp. We need only consider the case when x
= a/l and y = b/1 for some a, b € P, Suppose, without loss
of generality, that a does not divide b in R. Thus aM < bR
since R is a PVR. Since R is quasilocal and P is not
maximal, thereis an s ¢ M - P. Thus as = br for some r € R,
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Hence a = b(r/s) with r/s ¢ Rp, and so aRp C bRp. Thus’

Rp is a chained ring,
For the “morecover” statement, choose t € M - P, and let

% efM: M and s € R - P. Then x/s = xt/{st) € Rp. Hence

(M :MJjp € Rp, and thus Rp » (M: M)p. ©

The "moreover” statement in Theorem 12 also follows by
cormbining Corollary 9 with general results about pulibacki '
. We say that an ideal | of R satisfies property () if
whenever xy ¢ [ for x, y € Rg, then either x ¢ I or v el
Such an ideal 1 is necessar:ly prime, and in the domain case, I
is strongly prime. If R :5 a von Neumann regular rmg, or
more generally any ring K with R = Rg, then all maximal
ideals of R satisfy (x) and R need not be quasilocal
However, we do show that a rmaximal ideal which is strongly
prime satisfies (x]). First a lemma.

-

Lemma 13. Let R be a PVR with maximal ideal M. I
v € Rg - R, then y™1 ¢ (M: M) ‘

Proof. Since Rg # R, thereis a non-zerodivisor z ¢ M. Write
v = r/s with r ¢ R and s ¢ S. Then rR and sM are
comparable since R is a PYR. Since r/s ¢ R, also r¢ sM, and
hence sM is properly contained in rR. Thus sM C rM. Hence
sz = rt for some t ¢ M. Note that r and t are not

- S
zerodivisors since s and z are not zerodivisers. Thus v =
s/r € Rg, and hence (s/r)M C M; so v lem™:M). O

Theorem 14. Let R be a PVR with maximal ideal M. Then

M satisfies (x}. -
Proof. Let xy € M with x, v € Rg. If x, v € R, then either

x € M or vy e M. If x ¢ Rg~R, then 2=l ¢ (M : M) by
M. O

[

Lemma 13. Hence vy = x~1(xy)

Remark 15. The converse to Theorem 14 is false; J:ust ietﬁ R
be any von Neumann regular ring which is not quasilocal. rfs;*
a quasilocal example, let k be a field, X, Y, and Z be
indeterminates, and R = k{X,Y,Z}/{XE, Y'Q; 72) = kix, v,z
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Then R is quasilocal with maximal ideal M = (%, v, 2) and
Z{R) = M; so Rg = R, and henice M satisfies (x). However, R

is not a PVR since xM and vyR are not comparable because
xz € YR and v ¢ xM. 01

We next determine necessary and sufficient conditions for
a maximal ideal which satisfies (x) to be strongly prime. Of
course, the concepts coincide when R is an integral domain.

Theorem 16. Let R be a quasilocal ring whose maximal-ideal E

i

M satisfies (x). Then M is strongly prime if and only -if

(1) Z(R) is a prime ideal of R and is comparable to each
principal ideal of R, and

(2) *M and yR are comparable for all x, v € Z(R).

Proof. Suppose M is strongly prime, and hence (2) holds. Then
R is a PVR by Thecrem 2. By Lemma 1(a), Spec(R) is linearly
ordered by inclusion; so, Z(R} is a prime ideal (cf. (10, p. 3 and
Theorem 9]). Hence by Lemma 1{a), (1) also holds.

Conversely, suppose that R satisfies (1) and (2). We show
that xM and YR are comparable for all %,y ¢ M. If x,v ¢
Z(R), this follows from (2). If x ¢ Z(R) and y € Z{R), then by
(1), kR ¢ Z(R) € yR; hence xM ¢ yR. If x ¢ Z(R) and v ¢
Z(R), then yR < Z(R); also, Z(R) € xM since if xM cC Z(R),
then %2 ¢ Z(R), a contradiction since Z(R) is a prime ideal of
R. Finally, suppose that x ¢ Z(R), vy € Z(R), and xM ¢ vyR.
Then (x/y)M ¢ R, and hence xm/y ¢ R for some m € M.
Then (y/x){xm/y) = m ¢ M, so yv/x € M since M satisfies
(x). Hence yR C xM, and so M is strongly prime. O

We next study the integral closure R' of a PVR, (R, M}.
We first show that R' ¢ (M : M) in general.

Lemma 17. Let R be a PVR with maximal ideal M. Then
R'¢ (M : M). v

Proof. Let x =1r/s ¢ R, where r ¢ R and s ¢ S. Then sR
and rM are comparable since R isa PVR. If sR ¢ rM, then
s = rm for some m € M. Thus m is not a zerodivisor; so
i/m =r/s ¢ R'. But then 1/m integral over R implies that
m is a unit of R, a contradiction. Thus rM C sM, that is,
(r/s)M € M. Hence R'C (M : M) O
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Qur next example shows that the containment in Lemma
17 may be strict even in the integral domain f:atse. Theorem
21 gives necessary and sufficient conditions for R' = (M : M),

Example 18, Let k be a field, X and Y indeterminates, and

R = k + Yk(X)[Y]. Then R is an integrally closed PVD (;f.t{ii
i i i in its associate

Example 2.11) which is properly contained in i

valuation overring kOOUYI = (M : M), where M = YkQOUYIL

a

Theorem 19. Let R be a PVR with maximal ideal M. Then
R' iz a PVR with maximal ideal M. ‘ ‘
Proof. By Lemma 17, R’ ¢ (M : M); hence M isv a prime LFieai
of R' by Theorem 14. By integrality, M s the unique
mazximal ideal of R'. By Theorem 7, R' isa PVR. O

We will need Lermmma 13 and the following lemma for the
proof of Theorem 21.

Lemma 20. Let R be a PVR with maximal ideal M. Let B

i - = ivisor
be an overring of R. If s 1 ¢B for some non-zerod

s € M, then B is a chained ring.

Proof. Let y € B~R. Then y = a/t, where a € AR and t € S.
Since aR and tM are comparable, necessarily tM C aR
since a/t ¢ R. Thus st = ar for some r € R. Hence a ¢ S
Thus y™1 = t/a = r/s € B since s 1 ¢ B. Hence B - R C U.(B),
the set of units of B. Thus to show that B is a chained ring,

we need only show that aB and bB are comparable for a, b~

¢ R. Since R .is a PVR, aM and bR are comparable. If aM
C bR, then as = bx for some x € R, and hence a = b()vc/s)
gives aB ¢ bB. If bR ¢ aM, then bB C aB. Hence B is a

chained ring. O

Our final result generalizes a result for integral domains
({9, Proposition 2.7, [6, Proposition 4.21).

Theorem 21. Let R be a PVR with maximal ideal M. Then
R'= (M : M} if and only if every overring of R is a PYR,

Proof. Suppose that R' = (M :M). Let B be an ovez‘rmgﬁf R.
By Lemma 20 and Corocllary 4, we may assume that s ¢ B
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for all non-zerodivisors s € M. Let y =r/s € B~R, where r
€ R and s ¢ S. By Lemma 13, v 1 € (M: M), and hence vl
€ R. Thus y"1 ¢ Rlyl ¢ B: so vy isaunitof B. Also, y"l¢ R
since otherwise t = y‘:L € M would be a non-zerodiviser with
t™l ¢ B. Thus v € B - R implies vl ¢ B-R, and hence v -
vy Hlemm:M =R by Lemma 13. Thus M is the unique
maximal ideal of B. Hence B is a PVR by Thecrem 7.

Conversely, suppose R' is properly contained in (M : M).
Then R'/M < (M : M)/M is not an algebraic extension. Hence
there is an intermediate ring which is not quasilocal. Its
inverse image vields a nonquasilocal ring A between R' and
(M : M) (cf. [3, Corollary 3.26]). By Lemma 1(b), A is not a
PVR.
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